Calculate mean energy
Usage
calculate_energy(
pattern,
weights = c(1, 1),
return_mean = FALSE,
verbose = TRUE
)
Details
The function calculates the mean energy (or deviation) between the observed pattern and all reconstructed patterns (for more information see Tscheschel & Stoyan (2006) or Wiegand & Moloney (2014)). The pair correlation function and the nearest neighbour distance function are used to describe the patterns.
References
Kirkpatrick, S., Gelatt, C.D.Jr., Vecchi, M.P., 1983. Optimization by simulated annealing. Science 220, 671–680. <https://doi.org/10.1126/science.220.4598.671>
Tscheschel, A., Stoyan, D., 2006. Statistical reconstruction of random point patterns. Computational Statistics and Data Analysis 51, 859–871. <https://doi.org/10.1016/j.csda.2005.09.007>
Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point-pattern analysis in ecology. Chapman and Hall/CRC Press, Boca Raton. ISBN 978-1-4200-8254-8
Examples
pattern_random <- fit_point_process(species_a, n_random = 19)
#> Unmarking provided input pattern.
#>
> Progress: n_random: 1/19
#>
> Progress: n_random: 2/19
#>
> Progress: n_random: 3/19
#>
> Progress: n_random: 4/19
#>
> Progress: n_random: 5/19
#>
> Progress: n_random: 6/19
#>
> Progress: n_random: 7/19
#>
> Progress: n_random: 8/19
#>
> Progress: n_random: 9/19
#>
> Progress: n_random: 10/19
#>
> Progress: n_random: 11/19
#>
> Progress: n_random: 12/19
#>
> Progress: n_random: 13/19
#>
> Progress: n_random: 14/19
#>
> Progress: n_random: 15/19
#>
> Progress: n_random: 16/19
#>
> Progress: n_random: 17/19
#>
> Progress: n_random: 18/19
#>
> Progress: n_random: 19/19
#>
calculate_energy(pattern_random)
#>
> Progress: 1/19
#>
> Progress: 2/19
#>
> Progress: 3/19
#>
> Progress: 4/19
#>
> Progress: 5/19
#>
> Progress: 6/19
#>
> Progress: 7/19
#>
> Progress: 8/19
#>
> Progress: 9/19
#>
> Progress: 10/19
#>
> Progress: 11/19
#>
> Progress: 12/19
#>
> Progress: 13/19
#>
> Progress: 14/19
#>
> Progress: 15/19
#>
> Progress: 16/19
#>
> Progress: 17/19
#>
> Progress: 18/19
#>
> Progress: 19/19
#>
#> randomized_1 randomized_2 randomized_3 randomized_4 randomized_5
#> 0.15879942 0.15783350 0.10696079 0.12465796 0.08076916
#> randomized_6 randomized_7 randomized_8 randomized_9 randomized_10
#> 0.10200352 0.09417464 0.10533838 0.11251767 0.12803654
#> randomized_11 randomized_12 randomized_13 randomized_14 randomized_15
#> 0.12981006 0.16507257 0.12181468 0.14356497 0.14001074
#> randomized_16 randomized_17 randomized_18 randomized_19
#> 0.12373462 0.13498715 0.14821297 0.14825450
calculate_energy(pattern_random, return_mean = TRUE)
#>
> Progress: 1/19
#>
> Progress: 2/19
#>
> Progress: 3/19
#>
> Progress: 4/19
#>
> Progress: 5/19
#>
> Progress: 6/19
#>
> Progress: 7/19
#>
> Progress: 8/19
#>
> Progress: 9/19
#>
> Progress: 10/19
#>
> Progress: 11/19
#>
> Progress: 12/19
#>
> Progress: 13/19
#>
> Progress: 14/19
#>
> Progress: 15/19
#>
> Progress: 16/19
#>
> Progress: 17/19
#>
> Progress: 18/19
#>
> Progress: 19/19
#>
#> [1] 0.1277134
if (FALSE) { # \dontrun{
marks_sub <- spatstat.geom::subset.ppp(species_a, select = dbh)
marks_recon <- reconstruct_pattern_marks(pattern_random$randomized[[1]], marks_sub,
n_random = 19, max_runs = 1000)
calculate_energy(marks_recon, return_mean = FALSE)
} # }