Skip to contents

Fit point process to randomize data

Usage

fit_point_process(
  pattern,
  n_random = 1,
  process = "poisson",
  return_para = FALSE,
  return_input = TRUE,
  simplify = FALSE,
  verbose = TRUE
)

Arguments

pattern

ppp object with point pattern

n_random

Integer with number of randomizations.

process

Character specifying which point process model to use. Either "poisson" or "cluster".

return_para

Logical if fitted parameters should be returned.

return_input

Logical if the original input data is returned.

simplify

Logical if only pattern will be returned if n_random = 1 and return_input = FALSE.

verbose

Logical if progress report is printed.

Value

rd_pat

Details

The functions randomizes the observed point pattern by fitting a point process to the data and simulating n_random patterns using the fitted point process. It is possible to choose between a Poisson process or a Thomas cluster process model. For more information about the point process models, see e.g. Wiegand & Moloney (2014).

References

Plotkin, J.B., Potts, M.D., Leslie, N., Manokaran, N., LaFrankie, J.V., Ashton, P.S., 2000. Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology 207, 81–99. <https://doi.org/10.1006/jtbi.2000.2158>

Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point-pattern analysis in ecology. Chapman and Hall/CRC Press, Boca Raton. ISBN 978-1-4200-8254-8

Examples

pattern_fitted <- fit_point_process(pattern = species_a, n_random = 39)
#> Unmarking provided input pattern.
#> 
> Progress: n_random: 1/39		
#> 
> Progress: n_random: 2/39		
#> 
> Progress: n_random: 3/39		
#> 
> Progress: n_random: 4/39		
#> 
> Progress: n_random: 5/39		
#> 
> Progress: n_random: 6/39		
#> 
> Progress: n_random: 7/39		
#> 
> Progress: n_random: 8/39		
#> 
> Progress: n_random: 9/39		
#> 
> Progress: n_random: 10/39		
#> 
> Progress: n_random: 11/39		
#> 
> Progress: n_random: 12/39		
#> 
> Progress: n_random: 13/39		
#> 
> Progress: n_random: 14/39		
#> 
> Progress: n_random: 15/39		
#> 
> Progress: n_random: 16/39		
#> 
> Progress: n_random: 17/39		
#> 
> Progress: n_random: 18/39		
#> 
> Progress: n_random: 19/39		
#> 
> Progress: n_random: 20/39		
#> 
> Progress: n_random: 21/39		
#> 
> Progress: n_random: 22/39		
#> 
> Progress: n_random: 23/39		
#> 
> Progress: n_random: 24/39		
#> 
> Progress: n_random: 25/39		
#> 
> Progress: n_random: 26/39		
#> 
> Progress: n_random: 27/39		
#> 
> Progress: n_random: 28/39		
#> 
> Progress: n_random: 29/39		
#> 
> Progress: n_random: 30/39		
#> 
> Progress: n_random: 31/39		
#> 
> Progress: n_random: 32/39		
#> 
> Progress: n_random: 33/39		
#> 
> Progress: n_random: 34/39		
#> 
> Progress: n_random: 35/39		
#> 
> Progress: n_random: 36/39		
#> 
> Progress: n_random: 37/39		
#> 
> Progress: n_random: 38/39		
#> 
> Progress: n_random: 39/39		
#>