Fit point process to randomize data
Usage
fit_point_process(
pattern,
n_random = 1,
process = "poisson",
return_para = FALSE,
return_input = TRUE,
simplify = FALSE,
verbose = TRUE
)
Arguments
- pattern
ppp object with point pattern
- n_random
Integer with number of randomizations.
- process
Character specifying which point process model to use. Either
"poisson"
or"cluster"
.- return_para
Logical if fitted parameters should be returned.
- return_input
Logical if the original input data is returned.
- simplify
Logical if only pattern will be returned if
n_random = 1
andreturn_input = FALSE
.- verbose
Logical if progress report is printed.
Details
The functions randomizes the observed point pattern by fitting a point process to
the data and simulating n_random
patterns using the fitted point process.
It is possible to choose between a Poisson process or a Thomas cluster process model.
For more information about the point process models, see e.g. Wiegand & Moloney (2014).
References
Plotkin, J.B., Potts, M.D., Leslie, N., Manokaran, N., LaFrankie, J.V., Ashton, P.S., 2000. Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology 207, 81–99. <https://doi.org/10.1006/jtbi.2000.2158>
Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point-pattern analysis in ecology. Chapman and Hall/CRC Press, Boca Raton. ISBN 978-1-4200-8254-8
Examples
pattern_fitted <- fit_point_process(pattern = species_a, n_random = 39)
#> Unmarking provided input pattern.
#>
> Progress: n_random: 1/39
#>
> Progress: n_random: 2/39
#>
> Progress: n_random: 3/39
#>
> Progress: n_random: 4/39
#>
> Progress: n_random: 5/39
#>
> Progress: n_random: 6/39
#>
> Progress: n_random: 7/39
#>
> Progress: n_random: 8/39
#>
> Progress: n_random: 9/39
#>
> Progress: n_random: 10/39
#>
> Progress: n_random: 11/39
#>
> Progress: n_random: 12/39
#>
> Progress: n_random: 13/39
#>
> Progress: n_random: 14/39
#>
> Progress: n_random: 15/39
#>
> Progress: n_random: 16/39
#>
> Progress: n_random: 17/39
#>
> Progress: n_random: 18/39
#>
> Progress: n_random: 19/39
#>
> Progress: n_random: 20/39
#>
> Progress: n_random: 21/39
#>
> Progress: n_random: 22/39
#>
> Progress: n_random: 23/39
#>
> Progress: n_random: 24/39
#>
> Progress: n_random: 25/39
#>
> Progress: n_random: 26/39
#>
> Progress: n_random: 27/39
#>
> Progress: n_random: 28/39
#>
> Progress: n_random: 29/39
#>
> Progress: n_random: 30/39
#>
> Progress: n_random: 31/39
#>
> Progress: n_random: 32/39
#>
> Progress: n_random: 33/39
#>
> Progress: n_random: 34/39
#>
> Progress: n_random: 35/39
#>
> Progress: n_random: 36/39
#>
> Progress: n_random: 37/39
#>
> Progress: n_random: 38/39
#>
> Progress: n_random: 39/39
#>