Skip to contents

O-ring function

Usage

estimate_o_ring(x, ...)

Arguments

x

ppp

...

Arguments passed to spatstat.explore::pcf.ppp()

Value

fv.object

Details

Estimates the O-ring function proposed by Wiegand and Moloney (2004). The O-ring statistic is defined as:

$$O(r) = \lambda * g(r)$$

Generally speaking, O(r) scales the pair correlation g(r) function with help of the intensity \(\lambda\). One advantage of the O-ring statistic is that it can be interpreted as a neighborhood density because it is a probability density function (Wiegand & Moloney 2004, 2014).

Returns an 'Function value object' of the spatstat package.

References

Wiegand, T., Moloney, K.A., 2004. Rings, circles, and null models for point pattern analysis in ecology. Oikos 104, 209–229. <https://doi.org/10.1111/j.0030-1299.2004.12497.x>

Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point-pattern analysis in ecology. Chapman and Hall/CRC Press, Boca Raton, USA. <isbn:978-1-4200-8254-8>

See also

Examples

input_pattern <- spatstat.random::runifpoint(n = 100)
estimate_o_ring(input_pattern)
#> Function value object (class ‘fv’)
#> for the function r -> g(r)*lambda
#> ............................................................................
#>       Math.label               Description                                  
#> r     r                        distance argument r                          
#> theo  g[Pois](r)*lambda        theoretical Poisson g(r)*lambda              
#> trans hat(g)[Trans](r)*lambda  translation-corrected estimate of g(r)*lambda
#> iso   hat(g)[Ripley](r)*lambda isotropic-corrected estimate of g(r)*lambda  
#> ............................................................................
#> Default plot formula:  .~.x
#> where “.” stands for ‘iso’, ‘trans’, ‘theo’
#> Recommended range of argument r: [0, 0.25]
#> Available range of argument r: [0, 0.25]