O-ring function
Arguments
- x
ppp
- ...
Arguments passed to
spatstat.explore::pcf.ppp()
Details
Estimates the O-ring function proposed by Wiegand and Moloney (2004). The O-ring statistic is defined as:
$$O(r) = \lambda * g(r)$$
Generally speaking, O(r) scales the pair correlation g(r) function with help of the intensity \(\lambda\). One advantage of the O-ring statistic is that it can be interpreted as a neighborhood density because it is a probability density function (Wiegand & Moloney 2004, 2014).
Returns an 'Function value object' of the spatstat
package.
References
Wiegand, T., Moloney, K.A., 2004. Rings, circles, and null models for point pattern analysis in ecology. Oikos 104, 209–229. <https://doi.org/10.1111/j.0030-1299.2004.12497.x>
Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point-pattern analysis in ecology. Chapman and Hall/CRC Press, Boca Raton, USA. <isbn:978-1-4200-8254-8>
Examples
input_pattern <- spatstat.random::runifpoint(n = 100)
Oest(input_pattern)
#> Function value object (class ‘fv’)
#> for the function r -> g(r)*lambda
#> ............................................................................
#> Math.label Description
#> r r distance argument r
#> theo g[Pois](r)*lambda theoretical Poisson g(r)*lambda
#> trans hat(g)[Trans](r)*lambda translation-corrected estimate of g(r)*lambda
#> iso hat(g)[Ripley](r)*lambda isotropic-corrected estimate of g(r)*lambda
#> ............................................................................
#> Default plot formula: .~.x
#> where “.” stands for ‘iso’, ‘trans’, ‘theo’
#> Recommended range of argument r: [0, 0.25]
#> Available range of argument r: [0, 0.25]